CONTROL OF MULTIAGENT SYSTEMS UNDER PERSISTENT DISTURBANCES

Tansel Yucelen† and Magnus Egerstedt‡

†School of Aerospace Engineering
‡School of Electrical and Computer Engineering

American Control Conference
June 27 – 29, 2012
Montréal, Canada

Multiagent Systems II
FrB01 – Saint Laurent
1 Preliminaries
 - Multiagent Systems
 - Consensus and Formation Problems
 - Persistent Disturbance Issue

2 Control under Persistent Disturbances
 - Proposed Local Control Architecture

3 Stability and Convergence
 - Semistability
 - Null space convergence
 - Convergence to a Constant Point
 - Illustrative Examples

4 Generalizations
 - Time-Varying Disturbances
 - Illustrative Examples

5 Concluding Remarks
Outline

1 Preliminaries
 - Multiagent Systems
 - Consensus and Formation Problems
 - Persistent Disturbance Issue

2 Control under Persistent Disturbances
 - Proposed Local Control Architecture

3 Stability and Convergence
 - Semistability
 - Null space convergence
 - Convergence to a Constant Point
 - Illustrative Examples

4 Generalizations
 - Time-Varying Disturbances
 - Illustrative Examples

5 Concluding Remarks
Agents able to sense, communicate, and process information.

Physical, biological, engineering, social, and economic systems.
Consensus Problem

Consensus

- Refers to agents coming to a global agreement on a state value

Graph Theoretic Modeling

- \(\dot{x}_i(t) = u_i(t), \quad u_i(t) \in \mathbb{R}^m, \quad i = 1, \ldots, n \)
- \(u_i(t) = -\sum_{j \sim i} (x_i(t) - x_j(t)) \)

\[
\Rightarrow \quad \dot{x}(t) = -\mathcal{L}(G) \otimes I_m x(t), \quad \mathcal{L}(G) \triangleq \mathcal{D}(G) - \mathcal{A}(G)
\]

where \(x(t) = [x_1^T(t), \ldots, x_n^T(t)]^T \)

- Connected (\(\leftrightarrow \)) graph and \(m = 1 \)

\[
\Rightarrow \quad \lim_{t \to \infty} x(t) = 1_n (1_n^T 1_n)^{-1} 1_n^T x_0 = \left(1_n 1_n^T / n\right) x_0
\]
Consensus Problem

Consensus

- Refers to agents coming to agreement on a state value

Graph Theoretic Modeling

\[\dot{x}_i(t) = u_i(t), \quad u_i(t) = -\sum_{i \sim j}(x_i(t) - x_j(t)) \]

\[\Rightarrow \dot{x}(t) = -L(G) \otimes \mathbf{1} x(t) \]

where \(x(t) = [x_1^T(t), \ldots, x_n^T(t)]^T \)

- Connected (\(\leftrightarrow \)) graph

\[\Rightarrow \lim_{t \to \infty} x(t) = 1_n(1_n^T 1_n)^{-1} 1_n^T x_0 = (1_n 1_n^T / n) x_0 \]
Formation Problem

Formation

- Refers to agents moving toward a desired geometric shape

Graph Theoretic Modeling

- Define τ_i as the displacement of x_i from the target location ξ_i
- Using transformation $\tau_i(t) = x_i(t) - \xi_i$ in $\dot{x}(t) = -\mathcal{L}(\mathcal{G})x(t)$

$$\Rightarrow \dot{x}(t) = -\mathcal{L}(\mathcal{G})x(t) - \mathcal{L}(\mathcal{G})\zeta$$

where $\zeta = [\zeta_1, \cdots, \zeta_n]^T$, or, locally

$$\Rightarrow \dot{x}_i(t) = -\sum_{j \sim i}(x_i(t) - x_j(t)) - (\zeta_i - \zeta_j)$$
Consensus and formation algorithms are not robust to disturbances

Need for controllers with integral action (at least second order)

Need to preserve the local nature of each agent's controller
Outline

1 Preliminaries
 - Multiagent Systems
 - Consensus and Formation Problems
 - Persistent Disturbance Issue

2 Control under Persistent Disturbances
 - Proposed Local Control Architecture

3 Stability and Convergence
 - Semistability
 - Null space convergence
 - Convergence to a Constant Point
 - Illustrative Examples

4 Generalizations
 - Time-Varying Disturbances
 - Illustrative Examples

5 Concluding Remarks
Control under Persistent Disturbances

Proposed Local Control Architecture

Problem Formulation

- System of \(n \) agents locally communicating subject to disturbances
 \[
 \dot{x}(t) = u(t) + w, \quad w = [w_1^T, \ldots, w_n^T]^T
 \]
- Reach global agreement on a state value

Proposed Controller

- \(u(t) = u_s(t) + u_a(t) \), \(u_s(t) = -\mathcal{L}(G)x(t) \), \(u_a(t) = -\hat{w}(t) \)
- \(\dot{\hat{w}}(t) = KQ(G)(x(t) - \hat{x}(t)) \)
 \[
 K = \text{diag}(k) > 0, \quad k = [k_1, \ldots, k_n]^T \quad \text{(learning gain)}
 \]
 \[
 Q(G) = I_n - S(G)(I_n + A(G))
 \]
 \[
 S(G) = \text{diag}(s) > 0, \quad s = [(N_1 + 1)^{-1}, \ldots, (N_n + 1)^{-1}]^T
 \]
 \[
 N_i, i = 1, \ldots, n, \text{ is the number of agent } i's \text{ neighbors}
 \]
- \(\dot{x}(t) = -\mathcal{L}(G)\hat{x}(t) + M(x(t) - \hat{x}(t)) \) \quad (\ast)
 \[
 M = mI_n > 0 \quad \text{(predicted state gain)}
 \]
Controller of Agent i

\[u(t) = -\mathcal{L}(\mathcal{G})x(t) - KQ(\mathcal{G}) \int_{0}^{\infty} (x(t) - \hat{x}(t)) \, dt \]

- Standard control solves the consensus problem if $w = 0_n$
- $x(t) - \hat{x}(t)$ serves as an error signal
- Additional control $u_a(t)$ has an integral action
 - Readily minimizes this error multiplied from left by $KQ(\mathcal{G})$

Local Projection Operator

$Q(\mathcal{G})$ is local version of $P_{\mathcal{L}(\mathcal{G})} \triangleq \mathcal{L}(\mathcal{G})(\mathcal{L}(\mathcal{G})^T \mathcal{L}(\mathcal{G}))+\mathcal{L}(\mathcal{G})^T = I_n - (1_n 1_n^T \, / \, n)$

Structure of Local Controllers

- $u_i(t) = -\sum_{i \sim j} (x_i(t) - x_j(t)) - \hat{w}_i(t)$
- $\dot{\hat{w}}_i(t) = -[KS(\mathcal{G})]_{ii} \sum_{i \sim j} (\tilde{x}_i(t) - \tilde{x}_j(t))$, $\tilde{x}_i(t) \triangleq x_i(t) - \hat{x}_i(t)$
- $\dot{\hat{x}}_i(t) = -\sum_{i \sim j} (\hat{x}_i(t) - \hat{x}_j(t)) + m(x_i(t) - \hat{x}_i(t))$
Outline

1 Preliminaries
 ■ Multiagent Systems
 ■ Consensus and Formation Problems
 ■ Persistent Disturbance Issue

2 Control under Persistent Disturbances
 ■ Proposed Local Control Architecture

3 Stability and Convergence
 ■ Semistability
 ■ Null space convergence
 ■ Convergence to a Constant Point
 ■ Illustrative Examples

4 Generalizations
 ■ Time-Varying Disturbances
 ■ Illustrative Examples

5 Concluding Remarks
Semistability

- \(\tilde{x}(t) \triangleq x(t) - \hat{x}(t) \) \(\Rightarrow \) \(\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) - \tilde{w}(t) \), \(\tilde{A} \triangleq -\mathcal{L}(\mathcal{G}) - M \)
- \(\tilde{w}(t) \triangleq \hat{w}(t) - w \) \(\Rightarrow \) \(\dot{\tilde{w}}(t) = KQ(\mathcal{G})\tilde{x}(t) \)
- \(e(t) \triangleq [\tilde{x}^T(t), \tilde{w}^T(t)]^T \) \(\Rightarrow \) \(\dot{e}(t) = \tilde{A}_0 e(t) \), \(\tilde{A}_0 \triangleq \begin{bmatrix} \tilde{A} & -I_n \\ KQ(\mathcal{G}) & 0_{n \times n} \end{bmatrix} \)

Supporting Lemmas

- \(\tilde{A} = -\mathcal{L}(\mathcal{G}) - M \) is asymptotically stable
- \(KQ(\mathcal{G}) \) has \(n - 1 \) positive eigenvalues and a zero eigenvalue
- Quadratic matrix polynomial \(Z(\lambda) = A\lambda^2 + B\lambda + C \) with nonsingular \(A \in \mathbb{IR}^{n \times n} \), positive-definite \(B \in \mathbb{IR}^{n \times n} \), and \(C \in \mathbb{IR}^{n \times n} \) has
 - \(\pi_-(Z) = \pi_+(A) + \pi_+(C) \) and \(\pi_0(Z) = \pi_0(C) \)

Theorem

- The solution \(e(t) \) is Lyapunov stable for all \(e_0 \in \mathbb{IR}^{2n} \) and \(t \geq 0 \), and \(e(t) \to \epsilon [1_n^T, -m1_n^T]^T \) as \(t \to \infty \), where \(\epsilon \) is a constant in \(\mathbb{IR} \)
- \(Z(\lambda) = \lambda^2I_n + \lambda(-\tilde{A}) + KQ(\mathcal{G}) \)
Proposition

The proposed controller produces consensus, that is,

\[
\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \frac{1}{n} \left[\frac{1}{n}^T x_0 - \frac{1}{n}^T \int_0^t \tilde{w}(\sigma) d\sigma \right]
\]

- Projections \(P_{\mathcal{L}(G)} \triangleq \mathcal{L}(G)(\mathcal{L}(G)^T \mathcal{L}(G))^+ \mathcal{L}(G)^T \) and \(P_{\perp \mathcal{L}(G)} \triangleq I_n - P_{\mathcal{L}(G)} \)

\[
\Rightarrow \lim_{t \to \infty} x(t) = \lim_{t \to \infty} P_{\mathcal{L}(G)} x(t) + \lim_{t \to \infty} P_{\perp \mathcal{L}(G)} x(t)
\]

\[
= \lim_{t \to \infty} x_1(t) + \lim_{t \to \infty} x_2(t)
\]

- \(\lim_{t \to \infty} x_1(t) = 0_n \)

- \(\lim_{t \to \infty} x_2(t) = \lim_{t \to \infty} P_{\perp \mathcal{L}(G)} x(t) = \lim_{t \to \infty} \frac{1}{n}^{1T}_n x(t) \)

\[
= \lim_{t \to \infty} \left(\frac{1}{n}^{1T}_n e^{-\mathcal{L}(G)t} x_0 - \frac{1}{n}^{1T}_n \int_0^t e^{-\mathcal{L}(G)(t-\sigma)} \tilde{w}(\sigma) d\sigma \right)
\]

\[
= \lim_{t \to \infty} \left(\frac{1}{n}^{1T}_n x_0 - \int_0^t \frac{1}{n}^{1T}_n \tilde{w}(\sigma) d\sigma \right)
\]
Boundedness of the Control Signal

Proposition

The control signal \(u(t) = -\mathcal{L}(G)x(t) - KQ(G)\int_0^\infty (x(t) - \hat{x}(t))\,dt \) satisfies \(\|u(t)\|_2 \leq u^* \) for all \(t \geq 0 \).

\[\dot{x}(t) = Ax(t) + d(t), \quad A \triangleq -\mathcal{L}(G), \quad d(t) \triangleq -\hat{w}(t) \]

- Defining \(P_\Sigma \triangleq [p_1, \ldots, p_{n-1}, \epsilon_1 n], \quad p_i \in \mathbb{R}^n \)

\[\Rightarrow A = P_\Sigma \Sigma P_\Sigma^T, \quad \Sigma \triangleq \begin{bmatrix} \Sigma_0 & 0_{n-1} \\ 0_{n-1}^T & 0 \end{bmatrix} \]

- Applying \(z(t) = P_\Sigma^T x(t) \) with \(P_\Sigma^T d(t) = [d_1^T(t), \ d_2(t)]^T \)

\[\Rightarrow \dot{z}_1(t) = \Sigma_0 z_1(t) + d_1(t) \Rightarrow \text{Bounded (} \Sigma \text{ Hurwitz)} \]

\[\Rightarrow \dot{z}_2(t) = d_2(t) \text{ (do not care)} \]

\[u(t) = Ax(t) - \hat{w}(t) = P_\Sigma \begin{bmatrix} \Sigma_0 z_1(t) \\ 0 \end{bmatrix} - \hat{w}(t) \Rightarrow \text{Bounded} \]
Extensions to Formation Problem

Proposed Controller

\[u(t) = u_s(t) + u_a(t) + u_f(t) \]

- \[u_s(t) = -\mathcal{L}(\mathcal{G})x(t) \]
- \[u_a(t) = -\hat{w}(t) \]
 - \[\dot{\hat{w}}(t) = K Q(\mathcal{G})(x(t) - \hat{x}(t)) \]
 - \[\dot{\hat{x}}(t) = -\mathcal{L}(\mathcal{G})\hat{x}(t) + M(x(t) - \hat{x}(t)) + u_f(t) \]
- \[u_f(t) = -\mathcal{L}(\mathcal{G})\zeta \]

\[e(t) \triangleq [\hat{x}^T(t), \hat{w}^T(t)]^T \Rightarrow \dot{e}(t) = \tilde{A}_0 e(t), \quad \tilde{A}_0 \triangleq \begin{bmatrix} \tilde{A} & -I_n \\ K Q(\mathcal{G}) & 0_{n \times n} \end{bmatrix} \]

- **Same** error dynamics (**stability holds**)!
- **Convergence** is a direct consequence

\[\lim_{t \to \infty} x(t) = \zeta + \lim_{t \to \infty} \frac{1}{n} \left[1_n^T x_0 - 1_n^T \int_0^t \hat{w}(\sigma) d\sigma \right] \]
Illustrative Example 1: $u_s \neq 0$ and $u_a \equiv 0$

- Cycle graph with 6 agents subject to constant disturbances
Illustrative Example 1: $u_s \neq 0$ and $u_a \neq 0$

- Cycle graph with 6 agents subject to constant disturbances
Convergence to a Constant Point

For consensus on a constant point in space

\[\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \frac{1}{n} \left[1^T_n x_0 - 1^T_n \int_0^t \tilde{w}(\sigma) d\sigma \right] \]

\[\Rightarrow \lim_{t \to \infty} \hat{w}(t) = 0_n \]

Modifying Integral Action

\[\hat{w}(t) = K(Q(G) + qI_n)(x(t) - \hat{x}(t)), \quad q \in \mathbb{IR}_+ \]

\[\hat{w}_i(t) = -[KS(G)]_{ii} \sum_{i \sim j} (\tilde{x}_i(t) - \tilde{x}_j(t)) + q[K]_{ii} \tilde{x}_i(t) \]

By \(e(t) \triangleq [\tilde{x}^T(t), \tilde{w}^T(t)]^T \) we have

\[\dot{e}(t) = \begin{bmatrix} \tilde{A} & -I_n \\ K(Q(G) + qI_n) & 0_{n \times n} \end{bmatrix} e(t) \]

\[\mathcal{Z}(\lambda) = \lambda^2 I_n + \lambda(-\tilde{A}) + (KQ(G) + qI_n) \Rightarrow \lim_{t \to \infty} e(t) = 0 \]
Illustrative Example 1 (Revisited)

- Cycle graph with 6 agents subject to constant disturbances
Illustrative Example 2: \(u_s \neq 0 \) and \(u_a \equiv 0 \)

- Cycle graph with 6 agents subject to constant disturbances
- Formation objective: \(\zeta = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]^T \)
Illustrative Example 2: $u_s \neq 0$ and $u_a \neq 0$

- Cycle graph with 6 agents subject to constant disturbances
- Formation objective: $\zeta = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]^T$
Outline

1 Preliminaries
 - Multiagent Systems
 - Consensus and Formation Problems
 - Persistent Disturbance Issue

2 Control under Persistent Disturbances
 - Proposed Local Control Architecture

3 Stability and Convergence
 - Semistability
 - Null space convergence
 - Convergence to a Constant Point
 - Illustrative Examples

4 Generalizations
 - Time-Varying Disturbances
 - Illustrative Examples

5 Concluding Remarks
Problem Formulation

- System of \(n \) agents locally communicating subject to disturbances
 \[\dot{x}(t) = u(t) + w(t), \quad \|w(t)\|_2 \leq w^*, \quad \|\dot{w}(t)\|_2 \leq \dot{w}^* \]
- Reach approximate global agreement on a state value

By \(e(t) \triangleq [\tilde{x}^T(t), \tilde{w}^T(t)]^T \) we have

\[
\dot{e}(t) = \begin{bmatrix}
\tilde{A} & -I_n \\
KQ(G) & 0_{n \times n}
\end{bmatrix} e(t) + \begin{bmatrix}
0_n \\
-I_n
\end{bmatrix} \dot{w}(t)
\]

- Additional input \(\dot{w}(t) \) can lead to “bursting”
Proposed Controller

- $u(t) = u_s(t) + u_a(t)$
 - $u_s(t) = -\mathcal{L}(G)x(t)$
 - $u_a(t) = -\hat{w}(t)$
 - $\hat{w}(t) = K\left(Q(G)(x(t) - \hat{x}(t)) - \kappa \hat{w} \right)$, $\kappa \in \mathbb{R}^+$
 - $\hat{x}(t) = -\mathcal{L}(G)\hat{x}(t) + M(x(t) - \hat{x}(t))$

- $V(\tilde{x}, \tilde{w}) = \tilde{x}^T \tilde{x} + \tilde{w}^T K^{-1} \tilde{w}$
 - $\dot{V}(\cdot) \leq -c_1 \|\tilde{x}\|_2^2 - c_2 \|\tilde{w}\|_2^2 + c_3$, $c_i > 0$, $i = 1, 2, 3$
 - Uniform ultimate boundedness

- Ultimate bound is small if $\lambda_{\text{min}}(K)$ large and/or κ small
Illustrative Example 3: \(u_s \neq 0 \) and \(u_a \equiv 0 \)

- Cycle graph with 6 agents subject to time-varying disturbances
Illustrative Example 3: $u_s \neq 0$ and $u_a \neq 0$

- Cycle graph with 6 agents subject to time-varying disturbances
Illustrative Example 4: $u_s \neq 0$ and $u_a \neq 0$

- Cycle graph with 6 agents subject to time-varying disturbances
- Formation objective: $\zeta = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]^T$
Illustrative Example 5: 2D Case

- Cycle graph with 6 agents subject to time-varying disturbances
Outline

1 Preliminaries
 - Multiagent Systems
 - Consensus and Formation Problems
 - Persistent Disturbance Issue

2 Control under Persistent Disturbances
 - Proposed Local Control Architecture

3 Stability and Convergence
 - Semistability
 - Null space convergence
 - Convergence to a Constant Point
 - Illustrative Examples

4 Generalizations
 - Time-Varying Disturbances
 - Illustrative Examples

5 Concluding Remarks
Concluding Remarks

Conclusions

- **Consensus** and **formation** problems are investigated when the agents are **perturbed** by (unknown) persistent disturbances.
- Proposed controller(s) **suppresses** the effect of **constant** or **time-varying** disturbances.
- Realization only requires **local information**.

Ongoing Research

- Analysis of **design parameters’ effects** on stability margins.
- Extensions to **digraphs** and **dynamic graphs**.
- Extensions to **n-th order** multivehicle systems.
Thank You