A NeuroAdaptive Control Architecture
for Nonlinear Uncertain Dynamical Systems
with Input Actuator Constraints

Tansel Yucelen, Wassim M. Haddad, and Anthony J. Calise

Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332-0150

American Control Conference
Baltimore, MD
June 30 – July 02, 2010

ThC03 – Harborside Ballroom D
Adaptive Control VI

July 1, 2010
Outline

1 Motivation and Goals
2 Adaptive Tracking
 ■ Neuroadaptive Control Architecture
3 Adaptive Tracking with Input Constraints
 ■ Neuroadaptive Control Architecture
4 Amplitude and Rate Saturation Constraints
5 Illustrative Numerical Examples
 ■ Van Der Pol Oscillator
 ■ Examples
6 Conclusion and Ongoing Research
Outline

1 Motivation and Goals
2 Adaptive Tracking
 - Neuroadaptive Control Architecture
3 Adaptive Tracking with Input Constraints
 - Neuroadaptive Control Architecture
4 Amplitude and Rate Saturation Constraints
5 Illustrative Numerical Examples
 - Van Der Pol Oscillator
 - Examples
6 Conclusion and Ongoing Research
Motivation and Goals

Motivation

- Many loops can be coupled (MIMO)
- Dynamics are nonlinear and uncertain
- Actuator dynamics
 - Amplitude and rate constraints
 - Quantization constraints
 - Time-delay constraints

GEORGIA TECH
Motivation and Goals

Goals

- Develop a direct **neuroadaptive control** framework for **non-linear uncertain** dynamical systems
- Address system uncertainties and non-linearities
- Address input actuator constraints
- Achieve system stability & performance **without** (excessive) reliance on system models
Develop a direct neuroadaptive control framework for non-linear uncertain dynamical systems

Address system uncertainties and nonlinearities

Address input actuator constraints

Achieve system stability & performance without (excessive) reliance on system models
Goals

- Develop a direct neuroadaptive control framework for non-linear uncertain dynamical systems
- Address system uncertainties and nonlinearities
- Address input actuator constraints
- Achieve system stability & performance without (excessive) reliance on system models
Motivation and Goals

Goals

- Develop a direct neuroadaptive control framework for nonlinear uncertain dynamical systems
- Address system uncertainties and nonlinearities
- Address input actuator constraints
- Achieve system stability & performance without (excessive) reliance on system models

Adaptive Control for Nonminimum Phase Systems
Motivation and Goals

Neuroadaptive Control Architecture

GeorgTech

NNs can approximate a large class of **continuous nonlinear** maps

- **Linear** parametrization of system uncertainty
- **Nonlinear** parametrization of system uncertainty

- Inherently parallel architecture
 - Parallel weight update laws
 - Update NN online

- These properties make **NNs** a viable paradigm for adaptive system identification and control

 - Complex highly nonlinear uncertain dynamical systems
Motivation and Goals

Neuroadaptive Control Architecture

GEORGIA TECH

- **NNs** can **approximate** a large class of **continuous nonlinear** maps
 - Linear parametrization of system uncertainty
 - Nonlinear parametrization of system uncertainty

- Inherently **parallel architecture**
 - Parallel weight update laws
 - Update NN online

- These properties make **NNs** a viable paradigm for adaptive system identification and control

- Complex highly nonlinear uncertain dynamical systems
Motivation and Goals

Neuroadaptive Control Architecture

- **NNs** can approximate a large class of **continuous nonlinear** maps
 - Linear parametrization of system uncertainty
 - Nonlinear parametrization of system uncertainty

- Inherently parallel architecture
 - Parallel weight update laws
 - Update NN online

- These properties make **NNs** a viable paradigm for adaptive system **identification** and **control**
 - Complex highly **nonlinear uncertain** dynamical systems
Can tolerate large system uncertainty levels

- Generally implemented without any regard to actuator amplitude and rate saturation constraints
- Adaptive controllers continue to adapt when feedback loop has been severed due to presence of actuator saturation
 - Degrade system performance
 - Drive system to instability
- Adaptive gain updates need to be modified when input constraints are active
Adaptive Control Schemes

- Can tolerate large system uncertainty levels
- Generally implemented without any regard to actuator amplitude and rate saturation constraints
- Adaptive controllers continue to adapt when feedback loop has been severed due to presence of actuator saturation
 - Degrade system performance
 - Drive system to instability
- Adaptive gain updates need to be modified when input constraints are active
Can tolerate large system uncertainty levels

Generally implemented without any regard to actuator amplitude and rate saturation constraints

Adaptive controllers continue to adapt when feedback loop has been severed due to presence of actuator saturation

- Degrade system performance
- Drive system to instability

Adaptive gain updates need to be modified when input constraints are active
Adaptive Control Schemes

- Can tolerate large system uncertainty levels
- Generally implemented without any regard to actuator amplitude and rate saturation constraints
- Adaptive controllers continue to adapt when feedback loop has been severed due to presence of actuator saturation
 - Degrade system performance
 - Drive system to instability
- Adaptive gain updates need to be modified when input constraints are active
Can we develop a new neuroadaptive control architecture that
- Ensures tracking in the face of actuator constraints
- Minimizes the effect of input actuator constraints
Outline

1. Motivation and Goals
2. Adaptive Tracking
 - Neuroadaptive Control Architecture
3. Adaptive Tracking with Input Constraints
 - Neuroadaptive Control Architecture
4. Amplitude and Rate Saturation Constraints
5. Illustrative Numerical Examples
 - Van Der Pol Oscillator
 - Examples
6. Conclusion and Ongoing Research
$\dot{x}(t) = A x(t) + B [u(t) + \Delta(x(t))]$, $x(0) = x_0$, $t \geq 0$

- $x(t)$ is available for full state feedback
- (A, B) is known, $\Delta(x)$ is unknown
- Linearly parameterized NN: $\Delta(x) = W^T \beta(x)$
Reference System

\[0 = A_m^T P + PA_m + R, \quad P > 0, \quad R > 0 \]

Matching conditions: \(\exists K_1, K_2 \) s.t. \(A_m = A - BK_1 \) & \(B_m = BK_2 \)
Adaptive Control for Nonminimum Phase Systems

\[u(t) = -K_1 x(t) + K_2 r(t) - \hat{W}^T(t) \beta(x(t)) \]

- **Weight update**: \(\dot{\hat{W}}(t) = \Gamma \beta(x(t)) e_x^T(t) P B \), \(\Gamma > 0 \), \(\hat{W}(0) = \hat{W}_0 \)
- **Error states**: \(e_x(t) = x(t) - x_m(t) \)
- **Guarantees Lyapunov stability** and \(e_x(t) \to 0 \) as \(t \to \infty \)
Adaptive Tracking with Input Constraints

1 Motivation and Goals
2 Adaptive Tracking
 - Neuroadaptive Control Architecture
3 **Adaptive Tracking with Input Constraints**
 - Neuroadaptive Control Architecture
4 Amplitude and Rate Saturation Constraints
5 Illustrative Numerical Examples
 - Van Der Pol Oscillator
 - Examples
6 Conclusion and Ongoing Research
Adaptive Tracking with Input Constraints

Neuroadaptive Control Architecture

Actuator Dynamics

GEOARIA

T
ECH

Uncertain System

$\dot{x}(t) = f(x(t), v(t)), \quad x(0) = x_0, \quad t \geq 0$

$u(t) = x(t)$

New Adaptation

New Adaptation

Actuator

Actuator

Uncertain System

Uncertain System

Modified Reference System

Modified Reference System

$\mathcal{A}_a: \begin{cases} \dot{x}_a(t) = f(x_a(t), v(t)), & x_a(0) = x_0, \quad t \geq 0 \\ u(t) = x_a(t) \end{cases}$

- Actuator dynamics $f(x_a, v)$ are known
- \mathcal{A}_p: (A, B) is known, $\Delta(x)$ is unknown
Adaptive Tracking with Input Constraints

Neuroadaptive Control Architecture

Modified Reference System

$\mathcal{G}_m : \dot{x}_m(t) = A_m x_m(t) + B_m r(t) + \eta(t), \quad x_m(0) = x_{m0}, \quad t \geq 0$

- $\eta(t) = B v(t)$
- A_m is Hurwitz, $0 = A_m^T P + P A_m + R$, $P > 0$, $R > 0$
- Matching conditions: $\exists K_1, K_2$ s.t. $A_m = A - B K_1$ and $B_m = B K_2$
Adaptive Tracking with Input Constraints

Neuroadaptive Control Architecture

Adaptation

\[u_d(t) = -K_1x(t) + K_2r(t) - \hat{W}^T(t)\beta(x(t)) \]

- **Weight update:** \(\hat{W}(t) = \Gamma[B(x)\left(e_x^T(t)P - e_u^T(t)\tilde{K}(t)B\right)], \quad \Gamma > 0 \)
- **Control error:** \(e_u(t) = v(t) - u(t) + u_d(t) \)
- **Linearized loop gain:** \(\tilde{K}(t) \triangleq [K_1 + \hat{W}^T(t)\beta'(x(t))] \)
Adaptive Tracking with Input Constraints

Neuroadaptive Control Architecture

New Adaptation

\[\dot{v}(t) = -\frac{1}{2} \tilde{Q} e_u(t) - g(t) + B^T P e_x(t), \quad v(0) = v_0, \quad t \geq 0 \]

- \(\tilde{Q} > 0 \)
- \[g(t) \triangleq \left[-\tilde{K}(t) [A_m x(t) + B_m r(t) + Bv(t) - Be_u(t)] - f(x(t), v(t)) + K_2 r(t) - \Gamma [\beta(x(t)) e_x^T(t) P B + \zeta(t)] \beta(x(t)) \right] \]
- Guarantees LS and \(e_x(t) \to 0 \) and \(e_u(t) \to 0 \) as \(t \to \infty \)

Guarantees

LS

e_x(t) \to 0

e_u(t) \to 0

as \(t \to \infty \)
Uncertain System $x(t)$

Actuator $u(t)$

New Adaptation $v(t)$

Adaptation $e_u(t)$

Adaptation $u_d(t)$

Modified Reference System $e_x(t)$

Modified Reference System $x_m(t)$

Adaptation $r(t)$

Actuator $g(t)$

New Adaptation $u(t)$

Uncertain System $x(t)$
Uncertain System $x(t)$

New Adaptation $v(t)$

Actuator $u(t)$

Uncertain System $x(t)$

Modified Reference System $x_m(t)$

Adaptation $u_d(t)$

$g(t)$

$e_u(t)$

$r(t)$

$e_x(t)$

$ex(t)$

$ud(t)$

$e(t)$

$eu(t)$

$ud(t)$

$ex(t)$

$ex(t)$
Amplitude and Rate Saturation Constraints

Outline

1 Motivation and Goals
2 Adaptive Tracking
 ▪ Neuroadaptive Control Architecture
3 Adaptive Tracking with Input Constraints
 ▪ Neuroadaptive Control Architecture
4 **Amplitude and Rate Saturation Constraints**
5 Illustrative Numerical Examples
 ▪ Van Der Pol Oscillator
 ▪ Examples
6 Conclusion and Ongoing Research
Amplitude and Rate Saturation Constraints

For amplitude saturation G_a reduces to G_{amp}

$$\begin{align*}
 x_a(t) &= 0, \quad x_a(0) = x_{a0} \\
 u(t) &= x_a(t)
\end{align*}$$

with

$$u_i(t) = u_{i_{\text{max}}} \text{sat} \left(\frac{u_i(t)}{u_{i_{\text{max}}}} \right)$$

and $u_{i_{\text{max}}}$ is the maximum amplitude saturation limit of control input $u_i(t), i = 1, \ldots, m$

For rate saturation, G_a reduces to G_{rate} with

$$\dot{u}_i(t) = \dot{u}_{i_{\text{max}}} \text{sat} \left(\frac{\dot{u}_i(t)}{\dot{u}_{i_{\text{max}}}} \right)$$

and $\dot{u}_{i_{\text{max}}}$ is the maximum rate saturation limit of control input $u_i(t), i = 1, \ldots, m$
Illustrative Numerical Examples

Outline

1. Motivation and Goals
2. Adaptive Tracking
 - Neuroadaptive Control Architecture
3. Adaptive Tracking with Input Constraints
 - Neuroadaptive Control Architecture
4. Amplitude and Rate Saturation Constraints
5. **Illustrative Numerical Examples**
 - Van Der Pol Oscillator
 - Examples
6. Conclusion and Ongoing Research
Van der Pol oscillator

\[\ddot{z}(t) = -2(\dot{z}^2(t) - 1)\dot{z}(t) - z(t) + u(t), \quad \dot{z}(0) = \dot{z}_0, \quad z(0) = z_0 \]

Actuator with time constant \(\tau_a \)

\[\begin{align*}
\dot{x}_a(t) & = -\tau_a x_a(t) + \tau_a v(t), \quad x_a(0) = 0, \quad t \geq 0 \\
u(t) & = x_a(t)
\end{align*} \]

Let \(x_1(t) = z(t) \) and \(x_2(t) = \dot{z}(t) \), then

\[\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u(t) + \Delta(x(t))), \quad x_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \]

\[\Delta(x) = -2x_1^2 x_2 \text{ and } x = [x_1, x_2]^T \]
Van der Pol oscillator

\[\ddot{z}(t) = -2(z^2(t) - 1)\dot{z}(t) - z(t) + u(t), \quad \dot{z}(0) = \dot{z}_0, \quad z(0) = z_0 \]

Actuator with time constant \(\tau_a \)

\[
\begin{align*}
\dot{x}_a(t) &= -\tau_a x_a(t) + \tau_a v(t), \quad x_a(0) = 0, \quad t \geq 0 \\
u(t) &= x_a(t)
\end{align*}
\]

Let \(x_1(t) = z(t) \) and \(x_2(t) = \dot{z}(t) \), then

\[
\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u(t) + \Delta(x(t))), \quad x_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}
\]

\(\Delta(x) = -2x_1^2x_2 \) and \(x = [x_1, x_2]^T \).
Van der Pol oscillator
\[\ddot{z}(t) = -2(z^2(t) - 1)\dot{z}(t) - z(t) + u(t), \quad \dot{z}(0) = \dot{z}_0, \quad z(0) = z_0 \]

Actuator with time constant \(\tau_a \)
\[\dot{x}_a(t) = -\tau_a x_a(t) + \tau_a v(t), \quad x_a(0) = 0, \quad t \geq 0, \quad u(t) = x_a(t) \]

Let \(x_1(t) = z(t) \) and \(x_2(t) = \dot{z}(t) \), then
\[\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u(t) + \Delta(x(t))), \quad x_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \]

\(\Delta(x) = -2x_1^2 x_2 \) and \(x = [x_1, x_2]^T \)
- \(\mathcal{G}_{in} \) is second-order
 - Natural frequency \(\omega_n = 2.0 \)
 - Damping ratio \(\zeta = 1.5 \)

\[\beta(x) = [1, \beta_1(x_1), \beta_2(x_2)]^T \text{ with} \]
\[\beta_i(x_i) = \frac{1}{1 + e^{-a_i x_i}}, \quad a_i > 0, \quad i = 1, 2 \]

- We set \(\Gamma = 2.5I, \; Q = 15I_2, \) and \(\bar{Q} = 60 \)

- Comparison with a hedging method
 - Standard neuroadaptive control with a hedge signal
 - Same basis function, adaptive gain and \(Q \)
Illustrative Numerical Examples

- \mathcal{G}_{in} is second-order
 - Natural frequency $\omega_n = 2.0$
 - Damping ratio $\zeta = 1.5$

- $\beta(x) = [1, \beta_1(x_1), \beta_2(x_2)]^T$ with
 $$\beta_i(x_i) = \frac{1}{1 + e^{-a_i x_i}}, \quad a_i > 0, \quad i = 1, 2$$

- We set $\Gamma = 2.5I$, $Q = 15I_2$, and $\bar{Q} = 60$

- Comparison with hedging method
 - Standard neuroadaptive control with a hedge signal
 - Same basis function, adaptive gain and Q
Illustrative Numerical Examples

- \(B_{r_0} \) is second-order
 - Natural frequency \(\omega_n = 2.0 \)
 - Damping ratio \(\zeta = 1.5 \)

- \(\beta(x) = [1, \beta_1(x_1), \beta_2(x_2)]^T \) with
 \[\beta_i(x_i) = \frac{1}{1 + e^{-a_i x_i}}, \quad a_i > 0, \quad i = 1, 2 \]

- We set \(\Gamma = 2.5I, \quad Q = 15I_2, \quad \bar{Q} = 60 \)

- Comparison with hedging method
 - Standard neuroadaptive control with a hedge signal
 - Same basis function, adaptive gain and Q
Illustrative Numerical Examples

Design

- G_{in} is second-order
 - Natural frequency $\omega_n = 2.0$
 - Damping ratio $\zeta = 1.5$

- $\beta(x) = [1, \beta_1(x_1), \beta_2(x_2)]^T$ with
 $$\beta_i(x_i) = \frac{1}{1 + e^{-a_i x_i}}, \quad a_i > 0, \quad i = 1, 2$$

- We set $\Gamma = 2.5I$, $Q = 15I_2$, and $\bar{Q} = 60$

- Comparison with hedging method
 - Standard neuroadaptive control with a hedge signal
 - Same basis function, adaptive gain and Q
Illustrative Numerical Examples

Example 1: $\tau_a = 1/2.5$

- Control Amplitudes
- Control Rates

Performance of the hedging based standard neuroadaptive control
Example 1: $\tau_a = 1/2.5$
Example 1: $\tau_d = 1/2.5$

Error signals approach zero asymptotically
Illustrative Numerical Examples

Example 2: $\tau_a = 1/1.5$

- Performance of the hedging based standard neuroadaptive control

Performance of the hedging based standard neuroadaptive control
Example 2: $\tau_0 = 1/1.5$

Performance of the proposed neuroadaptive control
Example 2: $\tau_a = 1/1.5$

- Error signals approach zero asymptotically
Example 3: $\tau_a = 1/1.5$, $u_{max} = \pm 2.5$, and $\dot{u}_{max} = \pm 2.5$
Example 3: $\tau_a = 1/1.5$, $u_{max} = \pm 2.5$, and $\dot{u}_{max} = \pm 2.5$

Performance of the proposed neuroadaptive control
Illustrative Numerical Examples

Example 3: $\tau_a = 1/1.5$, $u_{\text{max}} = \pm 2.5$, and $\dot{u}_{\text{max}} = \pm 2.5$

- Error signals approach zero asymptotically
Example 3: $\tau_a = 1/1.5$, $u_{max} = \pm 2.5$, and $\dot{u}_{max} \pm 2.5$

Error signals approach zero asymptotically for $\Gamma = 2.5$ and $\Gamma = 250$
Example 4: \(\tau_a = 1/1, I_{\text{quant}} = 0.5, u_{\text{max}} = \pm 2, \) and \(\dot{u}_{\text{max}} = \pm 2 \)
Illustrative Numerical Examples

Example 4: $\tau_a = 1/1$, $I_{\text{quant}} = 0.5$, $\theta_{\text{max}} = \pm 2$, and $\dot{\theta}_{\text{max}} = \pm 2$

Performance of the proposed neuroadaptive control
Example 4: $\tau_a = 1/1$, $I_{\text{quant}} = 0.5$, $u_{\text{max}} = \pm 2$, and $\dot{u}_{\text{max}} = \pm 2$.

Error signals approach zero asymptotically.
Example 4: $\tau_a = 1/1$, $I_{\text{quant}} = 0.5$, $u_{\text{max}} = \pm 2$, and $\dot{u}_{\text{max}} = \pm 2$.

Error signals approach zero asymptotically for $\Gamma = 2.5$ and $\Gamma = 250$.

Illustrative Numerical Examples
Outline

1. Motivation and Goals
2. Adaptive Tracking
 - Neuroadaptive Control Architecture
3. Adaptive Tracking with Input Constraints
 - Neuroadaptive Control Architecture
4. Amplitude and Rate Saturation Constraints
5. Illustrative Numerical Examples
 - Van Der Pol Oscillator
 - Examples
6. Conclusion and Ongoing Research
Conclusion

- **Developed** an **neuroadaptive control** architecture
 - Nonlinear multivariable **uncertain** systems
 - Input **actuator constraints**
- Formulated the approach
 - To address the slow actuator dynamics
 - To address amplitude and rate saturation constraints
- Considered
 - Linear parametrization of the uncertainty
 - Nonlinear parametrization of the uncertainty (in paper)

Ongoing Research

- Extensions to derivative-free adaptive control
- Extensions to output feedback adaptive control
- Extensions to discrete-time systems
Conclusion and Ongoing Research

Conclusion

- Developed an **neuroadaptive control** architecture
 - Nonlinear multivariable uncertain systems
 - Input actuator constraints
- Formulated the approach
 - To address the slow actuator dynamics
 - To address amplitude and rate saturation constraints
- Considered
 - Linear parametrization of the uncertainty
 - Nonlinear parametrization of the uncertainty (in paper)

Ongoing Research

- Extensions to derivative-free adaptive control
- Extensions to output feedback adaptive control
- Extensions to discrete-time systems
Conclusion

- **Developed** an neuroadaptive control architecture
 - Nonlinear multivariable uncertain systems
 - Input actuator constraints
- **Formulated** the approach
 - To address the slow actuator dynamics
 - To address amplitude and rate saturation constraints
- **Considered**
 - Linear parametrization of the uncertainty
 - Nonlinear parametrization of the uncertainty (in paper)

Ongoing Research

- Extensions to derivative-free adaptive control
- Extensions to output feedback adaptive control
- Extensions to discrete-time systems
Conclusion

- **Developed** an neuroadaptive control architecture
 - Nonlinear multivariable uncertain systems
 - Input actuator constraints
- **Formulated** the approach
 - To address the slow actuator dynamics
 - To address amplitude and rate saturation constraints
- **Considered**
 - Linear parametrization of the uncertainty
 - Nonlinear parametrization of the uncertainty (in paper)

Ongoing Research

- Extensions to derivative-free adaptive control
- Extensions to output feedback adaptive control
- Extensions to discrete-time systems
Conclusion and Ongoing Research

Thank You

QUESTIONS?