OUTPUT FEEDBACK ADAPTIVE STABILIZATION AND COMMAND FOLLOWING FOR MINIMUM PHASE DYNAMICAL SYSTEMS WITH UNMATCHED UNCERTAINTIES

Tansel Yucelen and Wassim M. Haddad

Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332-0150

American Control Conference
San Francisco, CA
June 29 – July 01, 2011

WeC01 – Franciscan A
Adaptive Control III

June 29, 2011
Outline

1 Motivation and Goals
2 Nonminimal State-Space Realization
 - Formulation: Cayley-Hamilton Construction
 - Nonminimal Controllable Realization
 - Full State Feedback Equivalent Form
3 Adaptive Control Architecture
 - Stabilization and Command Following
 - Visualization of Adaptive Control Architecture
4 Illustrative Numerical Examples
 - Stable and Unstable Plants
5 Conclusion and Ongoing Research
Motivation and Goals

Nonminimal State-Space Realization
- Formulation: Cayley-Hamilton Construction
- Nonminimal Controllable Realization
- Full State Feedback Equivalent Form

Adaptive Control Architecture
- Stabilization and Command Following
- Visualization of Adaptive Control Architecture

Illustrative Numerical Examples
- Stable and Unstable Plants

Conclusion and Ongoing Research
Motivation

- Models do not adequately capture the physical system
 - Idealized assumptions and model simplifications
 - Dynamics are nonlinear and uncertain
- Many loops can be coupled (MIMO)
- Unknown disturbances and unmodeled dynamics
- Commands may not be known in advance
Motivation and Goals

Goals

- Develop an **adaptive control framework** for dyn systems
 - Matched and unmatched uncertainties and disturbances
 - Unstable dynamics
- Achieve system **stability** and **performance**
 - Without excessive reliance on system models
 - With easily verifiable assumptions and minimal tuning effort

4/37 T. Yucelen and W. M. Haddad
Adaptive Control for Linear Dynamical Systems
Motivation and Goals

Standard Adaptive Control Schemes

- Often restricted to (strictly) positive real dynamical systems
 - Relative degree restrictions
- Often require matched uncertainty
 - Matching conditions
- Require knowledge of the high frequency gain
- Might not be robust to
 - Unmodeled dynamics
 - Unmatched uncertainty
- Can burst
 - Adaptive parameters drift to large values
Can we develop an **output fdbk adaptive control architecture** that

- Requires **minimal knowledge** of the system
- Is (as **simple** as) a **full state** feedback design
- Is applicable to **systems** with **matched and unmatched uncs**
- Is **robust** to **unmodeled dynamics**
Nonminimal State-Space Realization

Outline

1. Motivation and Goals
2. Nonminimal State-Space Realization
 - Formulation: Cayley-Hamilton Construction
 - Nonminimal Controllable Realization
 - Full State Feedback Equivalent Form
3. Adaptive Control Architecture
 - Stabilization and Command Following
 - Visualization of Adaptive Control Architecture
4. Illustrative Numerical Examples
 - Stable and Unstable Plants
5. Conclusion and Ongoing Research
Nonminimal state-space realization

- Involves an expanded system state that consists entirely of the filtered inputs and filtered outputs of the original system.

Why a nonminimal state-space realization?

- Allows us to cast an output feedback control problem as a full state feedback problem!
Consider the controllable and observable linear uncertain dynamical system G_p

$$\dot{x}_p(t) = A_p x_p(t) + B_p u(t), \quad x_p(0) = x_{p0}, \quad t \geq 0$$

$$y(t) = C_p x_p(t)$$

- $x_p(t) \in \mathbb{R}^n$, is an unknown state vector
- (A_p, B_p, C_p) are unknown system matrices

What is n?

System order is unknown but bounded $\leq n$
An input-output equivalent nonminimal observer canonical state space model G_o of G_p

\[
\dot{x}_o(t) = A_o x_o(t) + B_o u(t), \quad x_o(0) = x_{o0}, \quad t \geq 0
\]

\[
y(t) = C_o x_o(t)
\]

- $x_o(t) \in \mathbb{R}^{ln}$, $t \geq 0$, expanded state space

\[
A_o = \begin{bmatrix}
0 & I_l & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & I_l \\
-a_0I_l & -a_1I_l & \cdots & -a_{n-1}I_l
\end{bmatrix}, \quad B_o = \begin{bmatrix}
C_p B_p \\
C_p A_p B_p \\
\vdots \\
C_p A_p^{n-1} B_p
\end{bmatrix}
\]

\[
C_o = \begin{bmatrix} I_l & 0 & \cdots & 0 \end{bmatrix}
\]

- $A_o \in \mathbb{R}^{ln \times ln}$, $B_o \in \mathbb{R}^{ln \times m}$ expanded system model

- a_i's are the characteristic polynomial coefficients of A_p
From IO equivalent nonminimal observer canonical model G_o

\[
\begin{align*}
a_0 y(t) &= a_0 C o x_o(t) \\
a_1 \dot{y}(t) &= a_1 [C o A o x_o(t) + C o B o u(t)] \\
& \vdots \\
a_{n-1} \ddots (n-1)(t) &= a_{n-1} [C o A_{n-1}^o x_o(t) + C o A_{n-2}^o B o u(t) + \cdots + C o B o u^{(n-2)}(t)] \\
y^{(n)}(t) &= C o A_n o x_o(t) + C o A_{n-1} o B o u(t) + \cdots + C o B o u^{(n-1)}(t)
\end{align*}
\]

Define

\[
\begin{align*}
\bar{B}_0 & \triangleq C o (a_1 I_n + a_2 A_o + \cdots + a_{n-2} A_{o}^{n-3} + a_{n-1} A_{o}^{n-2} + A_{o}^{n-1})B_o \\
\bar{B}_1 & \triangleq C o (a_2 I_n + a_3 A_o + \cdots + a_{n-1} A_{o}^{n-3} + A_{o}^{n-2})B_o \\
& \vdots \\
\bar{B}_{n-1} & \triangleq C o B_o
\end{align*}
\]
Adding the $n + 1$ equations

$$y^{(n)}(t) = - [a_0 I_1 a_1 I_1 \cdots a_{n-1} I_1] Y(t) + [\overline{B}_0 \overline{B}_1 \cdots \overline{B}_{n-1}] U(t)$$

$$+ C_0 [A_0^n + a_{n-1} A_0^{n-1} + \cdots + a_1 A_0 + a_0 I_{n_1}] x_0(t)$$

- $Y(t) \triangleq [y^T(t), \dot{y}^T(t), \ldots, y^{T(n-1)}(t)]^T$
- $U(t) \triangleq [u^T(t), \dot{u}^T(t), \ldots, u^{T(n-1)}(t)]^T$

Using the Cayley-Hamilton theorem

$$y^{(n)}(t) = - [a_0 I_1 a_1 I_1 \cdots a_{n-1} I_1] Y(t) + [\overline{B}_0 \overline{B}_1 \cdots \overline{B}_{n-1}] U(t)$$

Define expanded state vector

$$x_n(t) \triangleq [Y^T(t), U^T(t)]^T \in \mathbb{R}^{n_1}, \quad n_1 \triangleq (m + l) \times n$$
\[\dot{x}_n(t) = A_n x_n(t) + B_n u^{(n)}(t), \quad x_n(0) = x_{n0}, \quad t \geq 0 \]
\[y(t) = C_n x_n(t) \]

\[A_n = \begin{bmatrix}
0 & I_l & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & I_l & 0 & \cdots & \cdots & 0 \\
-a_0 I_l & \cdots & -a_{n-1} I_l & 0 & \cdots & 0 & \cdots & B_{n-1} \\
0 & \cdots & \cdots & 0 & I_m & 0 & \cdots & \cdots \\
\vdots & \ddots \\
\vdots & \cdots & 0 & I_m & 0 & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
\end{bmatrix}, \quad B_n = \begin{bmatrix}
0 \\
\vdots \\
0 \\
\end{bmatrix} \]

\[C_n = \begin{bmatrix} I & 0 & \cdots & \cdots & 0 \end{bmatrix} \]

- \(A_n \in \mathbb{R}^{n_f \times n_f} \), \(B_n \in \mathbb{R}^{n_f \times m} \), and \(C_n \in \mathbb{R}^{l \times n_f} \)
To eliminate differential input and output signals in G_p, filter $u(t)$ and $y(t)$ through $1/\Lambda(s)$.

- $\Lambda(s) = s^n + ns^{n-1}\lambda + \cdots + \lambda^n$ is a monic Hurwitz polynomial.
- $x_n(t) \sim x_f(t) \in \mathbb{R}^n$ is a known filtered expanded state.

$x_f(t) = [y_f^T(t), \ldots, y_f^{(n-1)}(t), u_f^T(t), \ldots, u_f^{(n-1)}(t)]^T$

$\Delta q_f^T(t) \quad \Delta q_f^T(t) \quad \Delta v_f^T(t) \quad \Delta v_f^T(t)$

Since

$$\mathcal{L}\{u_f^{(n)}(t)\} = \frac{s^n - (s + \lambda)^n + (s + \lambda)^n}{(s + \lambda)^n} \mathcal{L}\{u(t)\}$$
$$= \left[s^n - (s + \lambda)^n \right] \mathcal{L}\{u(t)\} + \mathcal{L}\{u(t)\}$$

Alternative IO equi nonminimal controllable realization G_f of G_p:

$$x_f(t) = A_f x_f(t) + B_f u(t), \quad x_f(0) = x_{f0}, \quad t \geq 0$$

$$y(t) = C_f x_f(t)$$
System Structure

\[
A_f = \begin{bmatrix}
0 & I_l & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & I_l & 0 & \cdots & 0 \\
-a_0 I_l & \cdots & -a_{n-1} I_l & B_0 & \cdots & B_{n-1} \\
0 & \cdots & 0 & I_m & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & -\lambda^m I_m & \cdots & -n\lambda I_m \\
0 & \cdots & 0 & -\lambda^m I_m & \cdots & -n\lambda I_m \\
\end{bmatrix}, \quad B_f = \begin{bmatrix}
0 \\
\vdots \\
0 \\
\vdots \\
I_m \\
\vdots \\
I_m \\
\end{bmatrix}
\]

\[
C_f = \begin{bmatrix}
-a_0 I_l + \lambda^n I_l & \cdots & -a_{n-1} I_l + n\lambda I_l & B_0 & \cdots & B_{n-1}
\end{bmatrix}
\]

- \(A_f \in \mathbb{R}^{n_f \times n_f} \), \(B_f \in \mathbb{R}^{n_f \times m} \), and \(C_f \in \mathbb{R}^{l \times n_f} \)
- \(A_f = A_n - [0 \ B_n \lambda^T] \), \(\lambda = [\lambda^n, \ldots, n\lambda]^T \) - partially known
- \(B_f = B_n - \text{known!} \)
- \(C_f = \Phi + [\lambda^T \ 0] \) - Unknown but do not care since \(x_f \) is known!
Outline

1 Motivation and Goals
2 Nonminimal State-Space Realization
 ■ Formulation: Cayley-Hamilton Construction
 ■ Nonminimal Controllable Realization
 ■ Full State Feedback Equivalent Form
3 Adaptive Control Architecture
 ■ Stabilization and Command Following
 ■ Visualization of Adaptive Control Architecture
4 Illustrative Numerical Examples
 ■ Stable and Unstable Plants
5 Conclusion and Ongoing Research
Assumption 1

\(\mathcal{G}_p \) is minimum phase and \(C_p A_p^{d-1} B_p = \bar{B} \Lambda \)

- \(d \): Smallest pos integer \(i \) s.t. \(i \)th Markov pm \(C_p A_p^{d-1} B_p \neq 0 \)
- \(\bar{B} \in \mathbb{R}^{l \times m} \) is known
- \(\Lambda \in \mathbb{R}^{m \times m} \) is unknown and satisfies
 \[
 \Lambda = \text{block-diag}[\Lambda_{m_1}, \ldots, \Lambda_{m_s}]
 \]
 \(\Lambda_{m_i} \in \mathbb{R}^{m_{i_1} \times m_{i_1}}, \ldots, \Lambda_{m_s} \in \mathbb{R}^{m_{s_1} \times m_{s_1}}, \) and \(m_1 + \cdots + m_s = m \)
- For \(i \in \{1, \ldots, s\} \), \(\Lambda_{m_i} \) is either PD or ND

- \(\bar{B}_{n-1} = \bar{B}_{n-2} = \cdots = \bar{B}_{n-d+1} = 0 \) and \(\bar{B}_{n-d} = C_p A_p^{d-1} B_p \neq 0 \)
- SISO: w.l.o.g. \(\bar{B} = 1 \) and \(\text{sgn}(C_p A_p^{d-1} B_p) \) is known
- MIMO: \(\Lambda = \text{id}(\Lambda) \text{pd}(\Lambda), \text{id}(\Lambda) \) known, \(\text{pd}(\Lambda) \) unknown
\[
\dot{q}(t) = A_0 q(t) + B_0 v_0(t) + B_1 \Lambda \phi(t), \quad q(0) = q_0, \quad t \geq 0
\]
\[
\dot{v}(t) = A_v v(t) + B_v u(t), \quad v(0) = v_0
\]

- \(q(t) \triangleq [q_1^T(t), \ldots, q_n^T(t)]^T \in \mathbb{R}^n \)
- \(v_0(t) \triangleq [v_1^T(t), \ldots, v_{n-d}^T(t)]^T \in \mathbb{R}^{m(n-d)} \)
- \(v(t) \triangleq [v_1^T(t), \ldots, v_n^T(t)]^T \in \mathbb{R}^{mn} \)

Idea:
\[
\phi(t) \triangleq v_{n-d+1}(t) \in \mathbb{R}^m \quad \text{— Virtual control signal}
\]

- \(A_0 \triangleq \begin{bmatrix}
0 & I_l & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & I_l \\
-a_0 I_l & -a_1 I_l & \cdots & -a_{n-1} I_l \\
0 & I_m & \cdots & 0
\end{bmatrix}, \quad B_0 \triangleq \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
B_0 & \cdots & B_{n-d-1}
\end{bmatrix} \)

- \(A_v \triangleq \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
-\zeta_1 I_m & \cdots & -\zeta_m I_m
\end{bmatrix}, \quad \zeta_1 \triangleq \lambda^n, \ldots, \zeta_m \triangleq n \lambda, \quad A_v \text{ is Hurwz} \)

- \(B_1 \triangleq [0 \cdots 0 B^T]^T, \quad B_v \triangleq [0 \cdots 0 I_m]^T \)
Assumption 2

There exist $K_q \in \mathbb{R}^{n \times m}$ and $K_v \in \mathbb{R}^{m(n-d) \times m}$ s.t. $A_m \triangleq A_0 + B_1 \Lambda K_q^T$ is Hurwitz and $B_0 = B_1 \Lambda K_v^T$ holds.

- If q_0 is square (i.e., $m = l$) and \hat{B} is nonsingular, then Assumption 2 is automatically satisfied.

\[
\begin{align*}
\phi(t) &= \hat{K}_q(t)q(t) - \hat{K}_q(t)v_0(t) \quad - \text{Adaptive virtual control} \tag{1} \\
\dot{K}_q(t) &= -\Gamma_q q(t)q^T(t)P_mB_1 \text{id}(A), \quad \hat{K}_q(0) = \hat{K}_{q0}, \quad \Gamma_q > 0 \tag{2} \\
\dot{K}_v(t) &= \Gamma_v v_0(t)v_0^T(t)P_mB_1 \text{id}(A), \quad \hat{K}_v(0) = \hat{K}_{v0}, \quad \Gamma_v > 0 \tag{3} \\
0 &= A_m^T P_m + P_m A_m + R_m, \quad R_m > 0 \tag{4} \\
0 &= A_m^T P_m + P_m A_m + R_m, \quad R_m > 0 \tag{5} \\
\text{Then } (q(t), \hat{K}_q(t), \hat{K}_v(t)) \text{ is LS for all } (q_0, \hat{K}_{q0}, \hat{K}_{v0}) \in \mathbb{R}^m \text{ and } t \geq 0 \tag{6} \\
\text{And } q(t) \to 0 \text{ as } t \to \infty \tag{7}
\end{align*}
\]
$u(t) = \phi(t) + \zeta_1 \phi(t) + \zeta_2 \phi(t) + \cdots + \zeta_{n-d} \phi(t) + \zeta_{n-d+1} \phi(t)$

\[+ \zeta_{n-d} [\int_0^t \phi(\sigma_1) d\sigma_1] + \cdots + \zeta_2 \left[\int_0^t \left(\int_0^t \phi(\sigma_1) d\sigma_1 \right) d\sigma_2 \right] + \cdots + \zeta_1 \left[\int_0^t \left(\int_0^t \left(\int_0^t \phi(\sigma_1) d\sigma_1 \right) d\sigma_2 \right) \cdots d\sigma_{n-d-1} \right].\]

\[t \geq 0 \quad (*)\]

Theorem

Consider G_f with control signal $(*)$ and assume Assumptions 1 and 2 hold. Then:

- $x_p(t), \ t \geq 0$, satisfying G_f is bounded for all $x_p(0) \in \mathbb{R}^n$
- $y(t) \to 0$ as $t \to \infty$
Integrator state

\[\dot{q}_{\text{int}}(t) = \mathcal{F}[r(t) - y(t)] = r_f(t) - y_f(t) = q_1(t) \]

Augmented dynamics

\[q_a(t) = A_{a0} q_a(t) + B_{a0} v_0(t) + B_{a1} \Lambda \phi(t) + B_{am} r_f(t), \quad q_a(0) = q_{a0} \]

\[q_a(t) \triangleq [q^T(t), q_{\text{int}}^T(t)]^T \in \mathbb{R}^{(n+1)} \]

\[\dot{v}(t) = A_v v(t) + B_v u(t), \quad v(0) = v_0 \quad \text{– As before} \]

\[A_{a0} \triangleq \begin{bmatrix} 0 & I_l & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & I_l & \vdots \\ -a_0 I_l & -a_1 I_l & \cdots & -a_{n-1} I_l & 0 \\ -I_l & 0 & \cdots & 0 & 0 \end{bmatrix} , \quad B_{a0} \triangleq \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ 0 & \cdots & I_l & \cdots & \cdots \end{bmatrix} \]

\[B_{a1} \triangleq \begin{bmatrix} 0 & \cdots & 0 & B^T & 0 \end{bmatrix}^T , \quad B_{am} \triangleq \begin{bmatrix} 0 & \cdots & 0 & 0 & I_l \end{bmatrix}^T \]
Adaptive Control Architecture
Stabilization and Command Following

Assumption 2 for Command Following

Assumption 2′

There exist $K_{aq} \in \mathbb{R}^{l(n+1) \times m}$ and $K_{av} \in \mathbb{R}^{m(n-d) \times m}$ s.t.

$A_{am} \equiv A_{a0} + B_{a1} \Lambda K_{aq}^T$ is Hurwitz and $B_{a0} = B_{a1} \Lambda K_{av}^T$ holds.

If G_p is square (i.e., $m = l$) and \bar{B} is nonsingular, then Assumption 2 is automatically satisfied.

- Adaptive virtual control

\[
\phi_a(t) = \hat{K}_{aq}(t)q_a(t) - \hat{K}_{av}(t)v_0(t)
\]

\[
\dot{\hat{K}}_{aq}(t) = -\Gamma_{aq}q_a(t)e^T(t)P_{am}B_{a1}\text{id}(\Lambda), \quad \hat{K}_{aq}(0) = \hat{K}_{aq0}, \quad \Gamma_{aq} > 0
\]

\[
\dot{\hat{K}}_{av}(t) = \Gamma_{av}v_0(t)e^T(t)P_{am}B_{a1}\text{id}(\Lambda), \quad \hat{K}_{av}(0) = \hat{K}_{av0}, \quad \Gamma_{av} > 0
\]

\[
e(t) \triangleq q_a(t) - q_{am}(t)
\]

\[
q_{am}(t) = A_{am}q_{am}(t) + B_{am}r_e(t), \quad q_{am}(0) = q_{am0}
\]

\[
0 = A_{am}^TP_{am} + P_{am}A_{am} + R_{am}, \quad R_{am} > 0
\]
Adaptive Controller for Command Following

\[u(t) = \phi_n^d(t) + \zeta_{n-1} \phi_n^{d-1}(t) + \zeta_{n-2} \phi_n^{d-2}(t) + \cdots + \zeta_{n-d+2} \phi_n(t) + \zeta_{n-d+1} \phi_n(t) \\
+ \zeta_{n-d} \left[\int_0^t \phi_n(\sigma_1) d\sigma_1 \right] + \cdots + \zeta_2 \left[\int_0^t \int_0^t \phi_n(\sigma_1) d\sigma_1 \right] d\sigma_2 + \cdots \\
\times d\sigma_{n-d-1} + \zeta_1 \left[\int_0^t \int_0^t \int_0^t \phi_n(\sigma_1) d\sigma_1 \right] \times d\sigma_2 \cdots d\sigma_{n-d}, \quad t \geq 0 \quad (\ast) \]

Theorem

Consider \(G_f \) with control signal \((\ast)\) and assume Assumptions 1 and 2' hold. Then:

- \((e(t), K_q(t), K_a(t))\) is Lyapunov stable \(\forall (e_0, K_q(0))\) and \(t \geq 0\)
- \(x_p(t), t \geq 0\), satisfying \(G_p \) is bounded \(\forall x_p(0) \in \mathbb{R}^n\)
- \(e(t) \to 0 \) as \(t \to \infty \)

- \(\lim_{t \to \infty} e(t) = 0 \Rightarrow \lim_{t \to \infty} q_a(t) = q_{am}(t) \Rightarrow \lim_{t \to \infty} y(t) = r(t) \)
- \(\lim_{t \to \infty} y(t) = r(t) \)
Adaptive Control Architecture

Visualization of Adaptive Control Architecture

Visualization of Adaptive Controller

Adaptive Control for Linear Dynamical Systems
Outline

1 Motivation and Goals
2 Nonminimal State-Space Realization
 - Formulation: Cayley-Hamilton Construction
 - Nonminimal Controllable Realization
 - Full State Feedback Equivalent Form
3 Adaptive Control Architecture
 - Stabilization and Command Following
 - Visualization of Adaptive Control Architecture
4 Illustrative Numerical Examples
 - Stable and Unstable Plants
5 Conclusion and Ongoing Research
Illustrative Numerical Examples
Stable and Unstable Plants

Illustrative Example 1

Asymptotically stable plant

Consider the uncertain plant G_p

\[
\begin{align*}
\dot{x}(t) &= \begin{bmatrix} 0 & 1 \\ -50 & -2 \end{bmatrix} x(t) + \begin{bmatrix} -2 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix} \\
y(t) &= \begin{bmatrix} -1 & 0 \end{bmatrix} x(t)
\end{align*}
\]

- Poles $\{-1.0 \pm 7.0j\}$ and zero $\{-1.50\}$
- Let $\lambda = 5$ and let the reference model system matrix be
 \[
 A_{am} = \begin{bmatrix} 0 & 1 & 0 \\ -0.69 & -1.22 & 0.15 \\ -1 & 0 & 0 \end{bmatrix}
 \]
- Let $R_{am} = 10I_3$, $\Gamma_{aq} = 50I_3$, and $\Gamma_{av} = 10$
- w.l.o.g. let $\bar{B} = 1$ and assume $\text{sgn}(C_p A_p^{-1} B_p) = 1$ is known
Closed-loop response of asymptotically stable plant

Adaptive controller with $\Gamma_{aq} = 50I_3$ and $\Gamma_{av} = 10$ tracks $r(t)$
Consider the uncertain plant \mathcal{G}_p

\[
\dot{x}(t) = \begin{bmatrix} 0.5 & 1 \\ -2 & 1 \end{bmatrix} x(t) + \begin{bmatrix} -0.1 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}
\]

\[
y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} x(t)
\]

- **Poles** $\{0.75 \pm 1.39j\}$ and **zero** $\{-0.26\}$
- Let $\lambda = 5$ and let the reference model system matrix be

\[
A_{am} = \begin{bmatrix} 0 & 1 & 0 \\ -0.69 & -1.22 & 0.15 \\ -1 & 0 & 0 \end{bmatrix}
\]

- Let $R_{am} = 10I_3$, $\Gamma_{aq} = 50I_3$, and $\Gamma_{av} = 10$
- w.l.o.g. let $\bar{B} = 1$ and assume $\text{sgn}(C_pA_p^{-1}B_p) = 1$ is known
Closed-loop response of unstable plant
Adaptive controller with $\Gamma_{uq} = 50I_3$ and $\Gamma_{av} = 10$ tracks $r(t)$
Consider the uncertain plant \mathcal{G}_p

$$\dot{x}(t) = \begin{bmatrix} 0.5 & 5 \\ 2 & 0.5 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

$$y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} x(t)$$

- **Poles** $\{3.66, -2.66\}$ and **zero** $\{-2.75\}$
- Let $\lambda = 5$ and let the **reference model** system matrix be

$$A_{am} = \begin{bmatrix} 0 & 1 & 0 \\ -0.69 & -1.22 & 0.15 \\ -1 & 0 & 0 \end{bmatrix}$$

- Let $R_{am} = 10I_3$, $\Gamma_{aq} = 50I_3$, and $\Gamma_{av} = 10$
- w.l.o.g. let $\bar{B} = 1$ and assume $\text{sgn}(C_p A_p^{-1} B_p) = 1$ is known
Closed-loop response of unstable plant
Adaptive controller with $\Gamma_{aq} = 50/3$ and $\Gamma_{av} = 10$ tracks $r(t)$
Outline

1. Motivation and Goals
2. Nonminimal State-Space Realization
 - Formulation: Cayley-Hamilton Construction
 - Nonminimal Controllable Realization
 - Full State Feedback Equivalent Form
3. Adaptive Control Architecture
 - Stabilization and Command Following
 - Visualization of Adaptive Control Architecture
4. Illustrative Numerical Examples
 - Stable and Unstable Plants
5. Conclusion and Ongoing Research
Conclusion

- Developed an output feedback adaptive control architecture
 - Linear multivariable uncertain systems
 - Minimum phase zeros
- Predicated on a nonminimal state space realization
 - Known expanded set of states
- The controller does not require any information of
 - System zeros and poles
 - Structure of the uncertainty: Matched or unmatched

Ongoing Research

- Extensions to systems with unmatched disturbances
- Extensions to nonminimum phase systems
- Extensions to nonlinear uncertain dynamical systems
Conclusion and Ongoing Research

Thank You

QUESTIONS?