
 
 

 

  

Abstract — Field orientation or vector control is an advanced 
technique used for the development of high-performance 
permanent magnet synchronous motor (PMSM) drives. In this 
paper, a field-oriented adaptive nonlinear control for PMSM 
drives is presented for sensorless control of the speed and field 
of the motor, simultaneously. The proposed approach is based 
on a state-dependent Riccati equation (SDRE) control 
technique and its formulation utilizes a gradient-based neural-
like system for online computation. The unknown parameters 
of the PMSM drive, that is, stator resistance and load torque, 
as well as the speed of the motor, are estimated using an 
extended Kalman filter (EKF) to eliminate the mechanical 
sensors. The resulting adaptive algorithm is simple and fast and 
is easily applicable to real-time control of PMSM drives. The 
efficacy of the proposed approach for sensorless control of 
PMSM drives is demonstrated through an illustrative 
simulation for the proof of concept.  

                                                          NOMENCLATURE 

List of symbols 
id  Current in the direct axis 
iq  Current in the quadrature axis 
ω   Mechanical speed of the motor 
vd   Input stator voltage in the direct axis 
vq  Input stator voltage in the quadrature axis 
R  Stator resistance 
Ld  Inductance in the direct axis 
Lq  Inductance in the quadrature axis 
P  Number of poles 
F  Viscous friction coefficient 
J  Moment of inertia 
Φ  Rotor magnetic flux 
TL  Load torque 
 

I. INTRODUCTION 

   Permanent magnet synchronous motors (PMSM) are 
widely used in high performance servo applications due to 
their high efficiency, high power density, and large torque to 
inertia ratio [1], [2]. However, PMSMs are nonlinear 
multivariable dynamic systems and, without speed sensors 
and under load and parameter perturbations, it is difficult to 
control their speed with high precision, using conventional 
control strategies. 

 
 

 

Linearization and/or high-frequency switching based 
nonlinear speed control techniques, such as feedback 
linearization  control  and  sliding  mode control,  have  been 
implemented for the PMSM drives [3]–[6]. However, it is 
more efficient to use a nonlinear control method that is 
based on minimizing a cost function and allows one to 
tradeoff between the control accuracy and control effort. 
One such nonlinear control strategy is the nonlinear 
quadratic optimal control method that is an extension of the 
well known quadratic optimal control for linear systems. The 
technique requires the solution of a state-dependent Riccati 
equation (SDRE) to achieve the desired optimal control 
performance [8]-[11]. Although there are a number of other 
methods for nonlinear control design problem, the SDRE-
based control strategy is one of the few successful 
approaches that have important properties, such as 
applicability to a large class of nonlinear systems, and 
systematic formulation. Moreover, the SDRE formulation 
can be applied adaptively, especially for systems like the 
PMSM drives, which allows one to obtain the desired motor 
speed under perturbations and parameters variations, 
including the stator resistance and load torque changes. 

In short, this paper presents the design of an adaptive 
nonlinear quadratic optimal control, based on the SDRE 
formulation, for the speed control of three-phase PMSM 
drives with uncertain stator resistance and load torque. This 
new control approach for PMSMs provides relatively fast 
stabilization, a wide operating range, and a good dynamic 
performance. The implementation of this control needs the 
knowledge of the mechanical speed of the motor, load 
torque, and the stator resistance, which varies due to 
temperature changes. As it is known, the conventional speed 
sensors reduce the reliability of the PMSM drives. 
Moreover, it is difficult to mount them on high speed drives. 
As a result, several sensorless control methods for PMSM 
drives are proposed in [14]-[16]. A disadvantage of these 
methods is that the variation of stator resistance introduces 
error in their motor speed estimation. Therefore, eliminating 
these errors requires simultaneous estimation of stator 
resistance and load torque along the motor speed estimation. 
In this paper, an extended Kalman filter (EKF) is used for 
simultaneous estimation of the motor speed, and the stator 
resistance and load torque. Fast microcontrollers and digital 
signal processors (DSP) allow for simultaneous 
implementation of the extended Kalman filter and the 
SDRE-based control.  The proposed sensorless control 
strategy can enhance the performance and the reliability of 
the PMSM drives in industry.  
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 The paper is organized as follows. Section II and III 
present PMSM modeling and the nonlinear quadratic control 
strategy. Extended Kalman filter estimation method and 
simulation results are given in sections IV and V, 
respectively. Finally, conclusions are given in section VI. 

II. PMSM MODELING  
In the d-q reference frame, the three-phase PMSM can be 

described as, [3] 
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For a fixed desired speed, x3d , and assuming fixed load 

torque, to satisfy field-orientation condition, we let x1d=0. 
Then the desired values for x2, u1 and u2 would be 
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The problem is now to find a suitable feedback control  

1 2[ , ]Tu u u=  such that the regulation of the output speed x3 
to x3d, without a speed sensor, can be achieved in the 
presence of uncertain stator resistance and load torque. 
Define the state and control errors as 
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where u1d and u2d defined in (5) are the necessary steady 
state values for the PMSM system to remain in the 
equilibrium state. Incorporating equations (5) and (6) in 
equation (1) results in the following steady state error 
equations for the PMSM speed control, as  
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The nonlinear quadratic optimal control design for the 

system given in (7) is explained in the following section. 

III. NONLINEAR QUADRATIC OPTIMAL CONTROL 
This section presents the proposed nonlinear quadratic 

optimal control approach for the sensorless PMSM drives 
based on state-dependent Riccati equation (SDRE). The idea 
behind the method is to express the nonlinear model of the 
system in a state-dependent linear form and consider an 
associated SDRE for the control design. An equivalent state-
dependent linear model of the nonlinear system in (7) can be 
written as 

 
 

  ( )x A x x Bu= +                             (8) 
 
where the corresponding matrices A( x ) and B for the 
nonlinear PMSM model (1) are given as 
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However, one should be cautioned that, from many 
possible choices, the state-dependent matrices ( )A x  and 

( )B x  must be selected in such a way that the pair 

( )( ), ( )A x B x  is either controllable or stabilizable.  

It should be noted that the pair ( )( ), ( )A x B x  is 
controllable if and only if the controllability matrix 

( 1)( ) ( ) ( ) ( ) ( )n
C B x A x B x A x B xψ −⎡ ⎤= ⎣ ⎦  has full rank 

for all x. It is stabilizable if the uncontrollable states of the 
system are stable [8].  

Considering the above state-dependent linear model, a 
state feedback nonlinear quadratic regulator (NQR) design 
based on the SDRE technique is considered in the following 
for optimal control of the PMSM drives. In addition, we 
describe a neural-like computation methodology, for online 
implementation of the proposed techniques. 

A. Nonlinear Quadratic Regulator 
The objective is to find a state feedback control of the form 

u = -K(x) x  that minimizes a cost function given by  
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where   xn nQ ∈ℜ  is a symmetric positive semi-definite 
matrix, and   xm mR ∈ℜ  is a symmetric positive-definite 
matrix. Moreover, Tx Qx  is a measure of control accuracy 
and Tu Ru  is a measure of control effort [11]. It should be 
mentioned that the SDRE formulation allows one to tradeoff 
between the control accuracy and control effort. 

It should be noted here that, in addition to controllability of 
the pair ( )( ), ( )A x B x , matrix ( )A x  must be chosen in such 

a way that the pair ( )( ),A x D  is observable or detectable, 

where D is a matrix such that TQ D D= . Also note that the 
pair ( )( ),A x D  is observable or detectable if the pair 

( )( ),T TA x D  is controllable or stabilizable, respectively. 
The optimal control law is then given as 
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where ( )P x  is the symmetric, positive-definite solution of 
the state-dependent Riccati equation (SDRE) of the form 
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The resulting closed loop system can then be written as 
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CLA x
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where the closed-loop system matrix ( )CLA x  satisfies the 
point-wise Hurwitz condition ( )Re ( ) 0i CLA xλ < . The 
existence of a control law that guarantees local closed-loop 
stability is shown in [8].  

Therefore, there is a need to solve the state-dependent 
Riccati equation (11) to realize an SDRE-based NQR law. 
The online neural-like computation method for solving the 
required SDRE is given in the following section. 

B. Online Gradient Type Neural-Like Solution of .State-
Dependent Riccati Equations 

It is well known that the solution of the SDRE could not be 
found analytically [8]–[12], but only for a very limited 
number of nonlinear systems. Therefore, one should require 
an online computation method for the solution of the SDRE. 

In the literature, a few computational methods have been 
proposed to solve the SDRE, in real-time [9]–[12]. Most of 
these methods are numerically complex and depend on 
correct initial conditions. Here, we present a fast, 
computationally simple, and efficient online method for 

solving the state-dependent Riccati equation (SDRE), using 
a gradient-based neural-like system for the purpose of 
nonlinear control synthesis. This technique is a state-
dependent extension of the neural network approach, [12] 
and [13], which was developed for online solution of the 
algebraic Riccati equation (ARE).  

For this purpose, consider (11) as a generic SDRE that 
needs to be solved. We know that the solution ( )P x  must be 
positive definite and symmetric. We also know that ( )P x  is 
positive-definite and symmetic if it has a Cholesky 
factorization [12]. Therefore, a constraint for ( )P x  to be 
positive-definite and symmetric  is added by requiring, 
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consider the following representation of (11) that we need to 
solve to obtain a robust stabilizing control law. That is, 
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where N(x)=B(x)R-1BT(x), and 2, jkg  is the jkth element of the 
objective function G2, , 1,...,j k n= . To solve ( )P x  from 
(13) and (14), the following Lyapunov energy function is 
first derived [13], 
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Then, a matrix-oriented gradient algorithm is developed to 

find the update rule for ( )P x  by changing the variables in 
the direction of the negative gradient of the energy function 
E to minimize (15), [12], [13], as 
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where nP and nL are positive scalar learning rates, and 
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where ℑ  is a symmetric non-decreasing activation function. 
Typical examples of ℑ  is given in [12]. Here, without loss 
of generality, the activation function is chosen as 
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( ( )) ( )f x f xℑ =                           (20) 
 
The architecture of the gradient-based neural-like system 

seeking the positive definite and symmetric solution of (11) 
consists of two layers, where (18), (19) act as hidden layers, 
and (16), (17) act as output layers [12], [13]. A schematic of 
the SDRE neural-like system is shown in Fig. 1. 

 

  
Fig. 1- Schematic of the SDRE neural-like system 

 
The proposed online control strategy described above can 

be implemented with the knowledge of the system states 
(current components and speed) and motor parameters 
(stator resistance and load torque). The only measurable 
states, however, are current components. Hence, we need to 
design an observer that can correctly estimate the motor 
speed. In addition, we need to design a parameter estimator 
to estimate the rotor resistance and load torque.  

An extended Kalman filter is used to estimate the 
unknown state and parameters of the PMSM, which is 
explained in the following section. 

IV. EXTENDED KALMAN FILTER ESTIMATION  
Here, the dynamic model of the PMSM described in 

section II augmented with that of the unknown parameters is 
considered for estimation. A continuous extended Kalman 
filter (EKF) is used for estimating the states of the 
augmented system. The augmented state variables are 

1 2 3 4 5 1 2 3[ , , , , ] , , , ,T
Lz z z z z z x x x R T= = ⎡ ⎤⎣ ⎦ . The dynamic 

model of the augmented system, consisting of the PMSM 
model and its unknown parameters (stator resistance and 
load torque), is given as   
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where y is the output vector (stator current components), 

5 5G I ×= , 5w∈ℜ and 2v ∈ℜ are white noise vectors with 

covariance matrices Ξ and Θ, and that 
( , )

( , )
0

mf x u
f z u

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

such that 

4
1 2 3 1

4
1 3 2 3 2

5
2 3

3
2

1

1

q

d d

d

q q q

d

m
q

Lz
z P z z u

L L

L z
f P z z z P z u

L L L

zF
P z z

J J J

L

L

− + +

Φ
= − − − +

Φ
− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1 0
0 1
0 0
0 0
0 0

TC

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The EKF estimator dynamics is then given as 
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Selecting the matrices 0Ξ ≥  and 0Θ ≥ , and assuming the 
system is observable, the following filter differential Riccati 
equation (FDRE) provides the covariance matrix 0Ν > . 
 

1T TF F C C−Ν = Ν + Ν + Ξ − Ν Θ Ν                          (23) 
 

where 0 0( )tΝ = Ν . Then the time-varying gain Kf can be 
determined as 
 

1T
fK C −= Ν Θ                                 (24) 

 
 The unknown motor states and its parameters are then 
estimated using the EKF estimator (22) with the knowledge 
of Kf and the measurement of motor currents. Using the 
estimated states (the motor speed, currents, and its unknown 
parameters), the motor speed can be controlled using 
equations (5), (6), and the optimal control (10).  
 

V. SIMULATION RESULTS  
In this section, the proposed approach has been carried out 

for PMSM control in order to verify the performance of the 
proposed nonlinear optimal speed control scheme under the 
stator resistance and load torque variations, using 
MATLAB/Simulink software. Fig.2 shows the schematic 
diagram of the proposed control. For this purpose, the 
parameters of the PMSM d-q reference frame model are 
given in Table I [see 3], while the SDRE and gradient-based 
neural-like system parameters are given in Table II. The 
simulation results are shown in Fig. 3- Fig.7.  
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Table 1- Model Parameters 

Model Symbols Values 

R 0.625 Ω  
Ld 0.036H 
Lq 0.051H 
P 2 
Φ 0.545 Wb 
J 7.5 x 10-4 Nmsec2 
F 0.036 Nm/A 

Table 2- Controller Parameters 

Controller Symbols Values 

Q diag(1, 1, 1) 
R diag(1, 10) 

nP , nL 0.05, 0.5 
P(0), L(0) 3I, I 

 

 
 

 Fig. 2- The overall simulated block diagram of the proposed control 
 
 

   
Fig.3- Actual motor speed (solid line), motor speed reference (dashed line)  

 
Fig.3 shows the motor speed for a step change command. 

It is obvious that the motor speed can track its desired value 
in a short time for stator resistance of 3Ω and load torque of 
0.9Nm and also when these values change. Fig.4 and Fig.5 
show the corresponding direct axis and quadrature axis 
currents, respectively.   

 
Fig.4- Direct axis current  
 

 
Fig.5- Quadrature axis current  
 

   
Fig.6- Rotor speed (solid line) and estimated speed (dashed line)  
 

 
Fig.7- Three phase PMSM currents  
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A continuous time extended Kalman filter (EKF) is used 

to estimate the motor speed, stator resistance and load 
torque. The positive definite matrices Ξ and Θ are selected 
as Ξ=diag[1e-6, 1e-6, 1e-6, 1e-3, 1e-5]  and Θ=diag[0.09, 
0.09]. The initial value of the covariance matrix N0 is 
selected as identity matrix. Fig.6 shows the rotor speed and 
the estimated speed with step change of 10 rad per sec. Also 
Fig.7 shows the three phase PMSM currents. 

Furthermore, Fig.8 and Fig.9 show the estimation results 
for the stator resistance and the load torque, respectively. 
Clearly the EKF accurately estimates the parameters.  

From the simulation results, it is evident that the proposed 
SDRE-based control design provides an efficient strategy for 
online sensorless speed control of the PMSM drives, which 
is also suitable for real-time implementation.  

 
 

 
Fig.8- Stator resistance (solid line) and estimated resistance (dashed line)  
 

 
Fig.9- Load torque (solid line) and estimated load torque (dashed line) 

VI. CONCLUSION 
A new adaptive nonlinear optimal control is developed for 

online control of PMSM drives, without requiring speed 
sensors. The control provides a wide operating range with a 
good dynamic performance. An extended Kalman filter 
(EKF) algorithm is used to estimate the motor speed, as well 
as the stator resistance and load torque, simultaneously. The 
estimated motor speed and parameters are then used in the 
proposed nonlinear optimal control scheme. The control uses 
the solution of the state-dependent Riccati equation (SDRE) 
via a gradient-based neural-like computation algorithm. The 
neural-like system allows one to solve the required SDRE, 

online, in an adaptive fashion. Successful simulation results 
verify that the proposed adaptive nonlinear control is 
suitable for real-time sensorless control of PMSM drives.  
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